Search results

1 – 7 of 7
Article
Publication date: 4 July 2018

Mu-ming Hao, Yun-lei Wang, Zhen-tao Li and Xin-hui Sun

The purpose of this paper is to investigate the effects of surface topography, including surface roughness, circumferential waviness and radial taper, on hydrodynamic performance…

Abstract

Purpose

The purpose of this paper is to investigate the effects of surface topography, including surface roughness, circumferential waviness and radial taper, on hydrodynamic performance of liquid film seals considering cavitation.

Design/methodology/approach

A mathematical model of liquid film seals with surface topography was established based on the mass-conservative algorithm. Liquid film governing equation was discretized by the finite control volume method and solved by the Gauss–Seidel relaxation iterative algorithm, and the hydrodynamic performance parameters of liquid film seals were obtained considering surface roughness, circumferential waviness and radial taper separately.

Findings

The results indicate that the values of load-carrying capacity and frication torque are affected by the surface topography in varying degrees, but the effect is limited.

Originality/value

The results presented in the study are expected to aid in determining the optimum value of structural parameters for the optimum seal performance because of the realistic model which considers both surface topography and cavitation.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 July 2019

Yun-Lei Wang, Jiu-Hui Wu, Mu-Ming Hao and Lu-Shuai Xu

The purpose of this paper is to investigate the effect of boundary slip on hydrodynamic performance of liquid film seal considering cavitation.

Abstract

Purpose

The purpose of this paper is to investigate the effect of boundary slip on hydrodynamic performance of liquid film seal considering cavitation.

Design/methodology/approach

A mathematical model of liquid film seal with slip surface was established based on the Navier slip model and Jakobsson–Floberg–Olsson (JFO) boundary condition. Liquid film governing equation was discretized by the finite difference method and solved by the SOR relaxation iterative algorithm and the hydrodynamic performance parameters of liquid film seal were obtained considering boundary slip and cavitation.

Findings

The results indicate that the values of performance parameters are affected significantly by the slip length under the condition of high speed and low differential pressure.

Originality/value

The performances of liquid film seal are investigated considering slip surface and cavitation. The results presented in the study are expected to provide a theoretical basis to improve the design method of liquid film seal.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 October 2018

Mu-ming Hao, Wen-jing Yang, Heng-chao Cao, Lu-shuai Xu, Yun-lei Wang and Yong-fan Li

The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation.

Abstract

Purpose

The purpose of this paper is to investigate the dynamic characteristics of a spiral groove liquid film seal considering the effect of cavitation.

Design/methodology/approach

A mathematical model of a spiral groove liquid film seal was established based on the mass-conserving Jakobsson–Floberg–Olsson cavitation boundary condition. The film rupture and film reformation boundaries were assumed to be unchanged under infinitesimal perturbation conditions. Governing equations under steady and perturbed states were solved by the finite element method, and then the dynamic characteristics of the spiral groove liquid film seal were theoretically investigated considering the effect of cavitation.

Findings

The results indicate that dynamic coefficients considering cavitation are smaller than those neglecting cavitation. The difference value is consistent with the change in cavitation area. The liquid film seal does not suffer axial instability whether considering cavitation, but its angular instability is more likely to occur when cavitation is considered.

Originality/value

For liquid lubricated non-contacting mechanical seals, the dynamic characteristics considering cavitation are investigated. The results are expected to provide a theoretical basis for improving the design method of liquid film seals.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 November 2020

Yun-lei Wang, Jiu-hui Wu, Zhen-tao Li and Lu-shuai Xu

The purpose of this paper is to investigate the effect of slip position on the performance of liquid film seal.

Abstract

Purpose

The purpose of this paper is to investigate the effect of slip position on the performance of liquid film seal.

Design/methodology/approach

A mathematical model of liquid film seal with slip/no-slip surface was established based on the Navier slip model and JFO boundary condition. Liquid film governing equation was discretized by the finite difference method and solved by the SOR relaxation iterative algorithm and the effects of slip position on sealing performance are discussed.

Findings

The results indicate that boundary slip plays an important role in the overall performance of a seal and a reasonable arrangement of slip position can improve the steady-state performance of liquid film seal.

Originality/value

Based on the mathematical model, the optimal parameters for liquid film seal with boundary slip at groove are obtained. The results presented in this study are expected to provide a theoretical basis to improve the design method of liquid film seal.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0082/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2023

Jiaxin Li, Zhiyuan Zhu, Zhiwei Li, Yonggang Zhao, Yun Lei, Xuping Su, Changjun Wu and Haoping Peng

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with…

Abstract

Purpose

Gallic acid is a substance that is widely found in nature. Initially, it was only used as a corrosion inhibitor to retard the rate of corrosion of metals. In recent years, with intensive research by scholars, the modification of coatings containing gallic acid has become a hot topic in the field of metal protection. This study aims to summarize the various preparation methods of gallic acid and its research progress in corrosion inhibitors and coatings, as well as related studies using quantum chemical methods to assess the predicted corrosion inhibition effects and to systematically describe the prospects and current status of gallic acid applications in the field of metal corrosion inhibition and protection.

Design/methodology/approach

First, the various methods of preparation of gallic acid in industry are understood. Second, the corrosion inhibition principles and research progress of gallic acid as a metal corrosion inhibitor are presented. Then, the corrosion inhibition principles and research progress of gallic acid involved in the synthesis and modification of various rust conversion coatings, nano-coatings and organic resin coatings are described. After that, studies related to the evaluation and prediction of gallic acid corrosion inhibition on metals by quantum chemical methods are presented. Finally, new research ideas on gallic acid in the field of corrosion inhibition and protection of metals are summarized.

Findings

Gallic acid can be used as a corrosion inhibitor or coating in metal protection.

Research limitations/implications

There is a lack of research on the synergistic improvement of gallic acid and other substances.

Practical implications

The specific application of gallic acid in the field of metal protection was summarized, and the future research focus was put forward.

Originality/value

To the best of the authors’ knowledge, this paper systematically expounds on the research progress of gallic acid in the field of metal protection for the first time and provides new ideas and directions for future research.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 August 2021

Haoping Peng, Zhaolin Luan, Jun Liu, Yun Lei, Junxiu Chen, Song Deng and Xuping Su

This paper aims to under the laboratory environment, the corrosion behavior of X80 pipeline steel in oilfield injection water in eastern China was studied by immersion test.

Abstract

Purpose

This paper aims to under the laboratory environment, the corrosion behavior of X80 pipeline steel in oilfield injection water in eastern China was studied by immersion test.

Design/methodology/approach

First, the corrosion product film was immersed in oilfield injection water and the effect on the corrosion behavior and the corrosion reaction mechanism were constantly observed during this period. The effect was displayed by potentiodynamic polarization curve and electrochemical impedance spectrums (EIS) measurements. Second, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to observe and test the corrosion product film immersed in the oilfield water for 30 days.

Findings

The results indicate that the tendency of metal corrosion becomes weaker at an early stage, but strengthened later, which means the corrosion rate is accelerating. Besides, it is indicated by impedance spectroscopy that with the decreasing of the capacitance arc radius, the reaction resistance is reducing in this progress. Meanwhile, the character of Warburg impedance could be found in EIS, which means that the erosional components are more likely to penetrate the product film to reach the matrix. The corrosion product is mainly composed of the inner Fe3O4 layer and outer shell layer, which contains a large number of calcium carbonate granular deposits. It is this corrosion under fouling that produces severe localized corrosion, forming many etch pits on the metal substrate.

Originality/value

The experiment chose the X80 steel, the highest-grade pipeline steel used in China, to conduct the static immersion test in the injection water coming from an oilfield in eastern China. Accordingly, the corrosion mechanism and the effect of corrosion product film on the corrosion of pipeline steel were analyzed and discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1990

Priscilla C. Yu

This study examines the collection building of Western language materials in a Third World national library. Given the multitude of demands and needs of a developing country…

Abstract

This study examines the collection building of Western language materials in a Third World national library. Given the multitude of demands and needs of a developing country, national libraries are confronted with basic problems, including convincing the government that the library is an important national institution, contributing to the nation's development and worthy of financial support. In addition to resource constraints, there is also the question of spending wisely for one's domestic collection as well as foreign publications, the latter being crucial if the Third World country is embarked upon a determined program of modernization. With limited resources on the one hand and the need to procure information from the developed world on the other, libraries in Third World countries could best meet their goals through careful planning. When collecting Western language materials, constructive planning could be achieved through a collection development policy in which Western collections are systematically and rationally built to assure collection growth and maximum utility.

Details

Collection Building, vol. 10 no. 1/2
Type: Research Article
ISSN: 0160-4953

1 – 7 of 7